
Engineering 1
Group Assessment 2

Change Report

Cohort 2
Team 11

Change Management

First of all, we went through documentation provided by Team 12 in order to get familiar with
their approaches and methods, as well as to identify both unimplemented and new features
that must be added to the game. Then, we divided tasks between all members of the team to
let everyone contribute to the project. Each member of the team was primarily responsible
for one deliverable which they made changes to.

Every week we had a team meeting where we discussed what had been changed or added
and what was yet to be done, as well as assigned new tasks. In our own Discord server,
members of the team could ask questions or discuss new changes anytime. It allowed
members to have a clear understanding of all changes and decisions, and to have an
opportunity to express their opinion about a certain change.

To keep track of all changes and make sure that all of them are necessary and justified, we
created a change log in our GitHub repository to record all significant changes along with the
date when they were made and their details. It enabled the team to react to new changes
quickly, for example, to identify the cause of an error in the code or approve/disapprove a
change. Additionally, GitHub allows you to view the commit history of any branch, as well as
get detailed information about each commit, which is particularly helpful for keeping track of
all changes and actions of contributors.

Furthermore, we continued to use Google Drive and some of the office tools that come with
it, namely Google Docs and Google Sheets. One of the main advantages of Google tools is
the ability to view edit history of a document and restore older versions of it, which is
especially useful for change management.

Changes made to Assessment 1 deliverables

Requirements:

Once the new requirements for Assessment 2 were released, we analyzed them and defined
any associated risks and possible alternatives. We added three new user requirements to
Requirements document, namely UR_LEVELS, UR_SAVE and UR_POWER_UP. All of
them were set by the customer and listed on VLE. Additionally, we defined new Functional
requirements and added them to the spreadsheet created by Team 12.

UR_LEVELS refers to the new requirement that the game must allow players to choose
between different levels of difficulty: Easy, Normal and Hard. These were the difficulty levels
listed as an example on the VLE, and are sufficient for this program.

UR_SAVE denotes the requirement to provide​ ​facilities that would allow players to save the
state of the game at any point and resume the saved game later.

Lastly, UR_POWER_UP is a new requirement to implement five power-up packs, which
could be found floating down the river and be picked up by boats to improve some of their
characteristics.

The URL of these requirements is:
https://eng1-team-11.github.io/ENG1-Team-12/Documentation2/Req1.pdf​, page 4

They can also be found in a table at:
https://eng1-team-11.github.io/ENG1-Team-12/Documentation2/ReqTable.pdf

All of the new requirements were set and defined by the customer, meaning that they are
necessary for the game to be complete and successful.

https://eng1-team-11.github.io/ENG1-Team-12/Documentation2/Req1.pdf
https://eng1-team-11.github.io/ENG1-Team-12/Documentation2/ReqTable.pdf

Updated User Requirements Table

Updated Functional Requirements Table

Architecture:

Abstract architecture

We decided to add three new entities to the abstract architecture, most notably class
Powerup ​which represents the power-ups that float down the river and can be picked up by
boats. ​Powerup ​inherits from the abstract class ​MoveableObject​, since it is supposed to be
moving along the lane and is similar to the ​Obstacle ​class. Like ​Obstacle​, it also implements
the ​CollisionObject ​interface, although certain functions within the Interface were changed
such that any object colliding with some other object, ​other​, will know the type of ​other​ and
can react accordingly (ie. Power-ups won’t damage the boat, obstacles will). Classes
SaveManager​ and ​Difficulty​ were also added.

Concrete architecture

The concrete architecture itself has not changed much as an outline of classes, although
actual implementation details differ significantly. Much of the superfluous and unnecessary
code has been removed or re-implemented in a cleaner or more efficient way.
Major changes to the code include:

1. The addition of the ​Powerup​ class which behaves similarly to the ​Obstacle​ class but
grants bonuses to the boats rather than penalising them. Required for
UR_POWER_UP.

2. All ​CollisionObject​ instances now have a “value” that the AI uses to decide whether it
should steer away from it or towards it, which allows the AI to play more
competitively.

3. The original artificial intelligence has been stripped out and replaced with one which
is much more competitive with the player, and far better optimised. As beating these
constitutes 90% of the gameplay, this helps with UR_LEVELS, UR_EXCITEMENT,
and UR_PERFORMANCE.

4. The ​Difficulty​ class has been added, which is implemented as a Singleton and tracks
the global difficulty setting. This is accessed by many classes and allows changes to
difficulty to be made quickly and centrally. Required for UR_LEVELS

5. A more robust UI system has been implemented, including ​Button​s, ​Switch​es,
Scene​s, ​Label​s, and ​Image​s. This represents a significant improvement over the
original approach which was to manually define these in game states themselves.

6. Many classes have had variables and functions removed where they have been
unnecessary, primarily in ​Scene* ​classes and in ​BoatRace​ where a lot of sprites
were stored, and references to single objects allow for the removal of checks against
entire lists to find one instance of a class.

7. The project itself has been updated to Java 8 to take advantage of new (2014)
language features for quicker and cleaner development.

8. The project has been refactored from snake_case to camelCase for fields and
variables as this is Java convention and less confusing.

9. Large if-statements connected by ​&&​ have been removed to improve readability as
well as performance in some cases

10. Almost every class field has been moved from the protected to private access level to
prevent accidental change of values by external functions that should not be able to
access these.

11. The entire game now calculates the time between frames and uses this for
movement-related calculations rather than assuming the game runs at 60 frames per
second, ensuring consistent movement even if the game is performing poorly. Whilst
it doesn’t directly improve performance, it should make the game feel smoother if it
does perform poorly, somewhat helping mitigate if UR_PERFORMANCE is not met.

12. All non-inner classes have been made public so that they can be used in unit testing,
and because exposing classes is generally a lot safer than exposing fields.

13. Collisions have been reworked to use a quadtree for storage of objects and lookup
rather than originally as a list, which has served to make some critical parts of the
code up to 100x less CPU time intensive. This has almost completely eliminated
anything blocking UR_PERFORMANCE.

Methods and Plans:

Method and Tool Selection

Both our team and Team 12 have opted to follow an agile development methodology,
specifically Scrum. The Scrum framework is designed for smaller teams, making it perfect for
us and our project. In Scrum, goals are broken down into small tasks which are completed
within a set amount of time known as a sprint. We decided to have small week-long sprints
as we had official supervised practical sessions once every week.

Most of the tools used by Team 12 coincided with our choice. Just like Team 12 we used the
following tools for completing the tasks in our project:

● Google Drive for storing documents and other files
● Discord for communication
● GitHub for source control
● Google Docs for writing up documents

Additionally, we used PlantUML for creating class diagrams and Javadoc for generating
HTML documentation of the source code.

For task management we decided to use GitHub Projects. It is a kanban board-style to-do
list allowing for the creation of boards and cards with tasks, which all developers can access
and modify. This was ideal for our chosen development methodology as it allows for tasks to
be broken down into smaller parts and put on a board where anyone can pick and develop

them, then move to the “completed” board. We favoured GitHub Pages over Trello, which
was used by Team 12, as we didn’t need any additional features provided by Trello (e.g.
colour coding and labelling) and having everything in one place was more convenient for us.

In addition, we supplemented the Method Selection and Planning document with additional
information such as information about the selected tools, justification, and possible
alternatives to some tools.

Team Management Approach and Plan

We decided not to change the plan and team management approach written by Team 12.
Instead, we added our own approach and plan as an extension.

Our approaches are quite similar due to the fact that both our teams used Scrum
development framework along with Discord as the main way of communication. Unlike Team
12, who split their team into sub-teams for tackling different parts of the assignment, we
divided tasks between individual members of the team. In the approach of Team 12, each
task had a leader as well as one or many collaborators which ensured good implementation
and involved frequent communication. In our approach, each member of the team was
primarily responsible for one task such as writing and updating one of the deliverables or
implementing a specific feature of the game. One of the advantages of our method is that
everyone had to focus on one or few specific tasks, which allowed for more thorough and
deep research and better understanding of each task.

For Assessment 2 we created a new Gantt chart to keep all things separate and focus on the
new tasks. We decided to keep Gantt Chart created by Team 12 and supplemented the
document with our own Gantt Chart (can be found on our website:
https://eng1-team-11.github.io/ENG1-Team-12/Documentation2/Gantt.pdf​) as well as
screenshots evidencing our work on the assignment.

We deleted some of the content provided by Team 12, namely sections ‘Key Event List’ and
‘Announcements’, as it overran the page limit allowed for Method Selections and Planning
deliverable and went beyond what was required.

Risk Assessment and Mitigation:

Our Approach and Presentation

Coincidentally, Team 12 had a similar approach of assessing and presenting risks. We both
used Low/Moderate/High scale to assess the likelihood and severity of possible risks, as well
as tabular format to present them. This system is clear and easy to understand, which
makes it perfect for small projects like ours.

Team 12 and our team both divided risks into three categories: “Project”, “Product” and
“Business”. “Project” category was assigned to the risks that might affect our project
schedule and progressing speed. “Product” category is for the risks that may potentially
affect the quality of the game, for example, any hardware or software issues. “Business”

https://eng1-team-11.github.io/ENG1-Team-12/Documentation2/Gantt.pdf

category was assigned to the risks that may affect the success of our product in the market,
in our case - success of using the game for promotional activities organized by The
University of York Communications Office.

In order to identify the risks associated with the new requirements for Assessment 2, we first
reviewed Assessment 1 requirements, specifically those that had not been implemented.
Then, we went through our project plan to determine all possible factors that can affect the
quality of the final product.

Furthermore, we chose a different format of presenting IDs of the risks, since the old format,
used by Team 12, took up too much space and yet was not informative, making it
inconvenient for us. We also removed the ‘Backup Owner’ column, since having one risk
owner was enough for our team.

Risks and Mitigation

We decided to keep all the risks identified by Team 12 as they all were possible and
coincided with the risks that had been found by our team. Additionally, we supplemented the
table with other risks that we identified while working on Assessment 1&2 as well as after
reviewing the new requirements for Assessment 2 (R10-R21)

The entire table can be found at:
https://eng1-team-11.github.io/ENG1-Team-12/Documentation2/Risk1.pdf​, with R10 starting
at page 4

ID Type Description Likeli
hood

Seve
rity

Mitigation Owner

R10 Project Miscommunications and
lack of clarity, e.g. several
members doing the same
task, misunderstanding
design decisions

M M Every team member must inform
others about the parts of the project
they are working on, ask for
clarification when uncertain about
something

All

R11 Project Team is running out of
time

H H Meet up more frequently and make
sure every team member is involved

All

R12 Project Conflicts within the team L M Try to resolve a conflict or minimize
its effect on the projects

All

R13 Project Misunderstanding some
of the assessment
questions

L H Contact the lecturer and make sure
all question are understood and
answered

All

R14 Business The customer is not
satisfied with the game
design/implementation

L H Set up a team meeting and discuss
possible

All

https://eng1-team-11.github.io/ENG1-Team-12/Documentation2/Risk1.pdf

R15 Product Product doesn’t meet
some user, functional or
nonfunctional
requirements

M H Review the requirements at each
stage of the project and make sure
all of them are me​t

All

R16 Product/
Business

Product doesn’t meet the
customer expectations,
e.g game is too complex,
too simple or not
enjoyable

L H Organize a team meeting and
discuss possible changes or
improvements

All

R17 Project Lack of skills/ knowledge
of team members

M H Team members must learn/improve
their skills through taking online
courses, reading relevant literature
or using any other resources

All

R18 Product Game is not playable on a
low spec computer (i.e.
dual-core laptop with 4GB
of RAM)

L M Set up a team meeting and discuss
what adjustments can be made to
the game to run on a low spec
machine

Coders

R19 Product Game logic does not work
as expected, e.g.
durability doesn’t reduce
when colliding with
obstacles, difficulty does
not increase/decrease
when changing the level
of difficulty etc.

L H Members responsible for the
implementation must go through the
code and find any logic errors

Coders

R20 Product/
Project

Misunderstanding the new
requirements or some of
the questions of
Assessment 2

L H Contact the lecturer and make sure
all question are understood and
answered, and new requirements
are clear

All

R21 Product New requirements are not
implemented for some
reason

L H Review the requirements at each
stage of the project and make sure
all of them are met. Make sure
someone is working on each new
feature of the game.

All

