Engineering 1
Group Assessment 2
Change Report

Cohort 2
Team 11



Change Management

First of all, we went through documentation provided by Team 12 in order to get familiar with
their approaches and methods, as well as to identify both unimplemented and new features
that must be added to the game. Then, we divided tasks between all members of the team to
let everyone contribute to the project. Each member of the team was primarily responsible
for one deliverable which they made changes to.

Every week we had a team meeting where we discussed what had been changed or added
and what was yet to be done, as well as assigned new tasks. In our own Discord server,
members of the team could ask questions or discuss new changes anytime. It allowed
members to have a clear understanding of all changes and decisions, and to have an
opportunity to express their opinion about a certain change.

To keep track of all changes and make sure that all of them are necessary and justified, we
created a change log in our GitHub repository to record all significant changes along with the
date when they were made and their details. It enabled the team to react to new changes
quickly, for example, to identify the cause of an error in the code or approve/disapprove a
change. Additionally, GitHub allows you to view the commit history of any branch, as well as
get detailed information about each commit, which is particularly helpful for keeping track of
all changes and actions of contributors.

Furthermore, we continued to use Google Drive and some of the office tools that come with
it, namely Google Docs and Google Sheets. One of the main advantages of Google tools is
the ability to view edit history of a document and restore older versions of it, which is
especially useful for change management.



Changes made to Assessment 1 deliverables
Requirements:

Once the new requirements for Assessment 2 were released, we analyzed them and defined
any associated risks and possible alternatives. We added three new user requirements to
Requirements document, namely UR_LEVELS, UR_SAVE and UR_POWER_UP. All of
them were set by the customer and listed on VLE. Additionally, we defined new Functional
requirements and added them to the spreadsheet created by Team 12.

UR_LEVELS refers to the new requirement that the game must allow players to choose
between different levels of difficulty: Easy, Normal and Hard. These were the difficulty levels
listed as an example on the VLE, and are sufficient for this program.

UR_SAVE denotes the requirement to provide facilities that would allow players to save the
state of the game at any point and resume the saved game later.

Lastly, UR_POWER _UP is a new requirement to implement five power-up packs, which
could be found floating down the river and be picked up by boats to improve some of their
characteristics.

The URL of these requirements is:
https://eng1-team-11.github.io/ENG1-Team-12/Documentation2/Req1.pdf, page 4

They can also be found in a table at:
https://eng1-team-11.github.io/ENG1-Team-12/Documentation2/RegTable.pdf

All of the new requirements were set and defined by the customer, meaning that they are
necessary for the game to be complete and successful.


https://eng1-team-11.github.io/ENG1-Team-12/Documentation2/Req1.pdf
https://eng1-team-11.github.io/ENG1-Team-12/Documentation2/ReqTable.pdf

SSON: A single-player boat racing game that captures the excitement of the annual York Dragon Boat Race

FR_SPEED_STAT

FR_STATS
| FR_STAM_DECR

FR_STAM_USAGE
FR_STAM_REGEN

FR_STAM_EFFECT
FR_LANE_PENALTY
FR_COLLISION

FR_MOVING_OBSTACLES
FR_OBSTACLE_CLUTTER

FR_OBSTACLES
FR_DIFFICULTY

FR_DIFFICULTY_DISPLAY
FR_CONTROLS

FR_TUTCRIAL
FR_LEGS

FR_AWARDS
| FR_BOATS_NO

|FR_POV
FR_INFO_DISPLAY
FR_PEN_NOTIFICATION
FR_LEVELS

|FR_SAVE

FR_POWER_UP

The speed specification of each boat should refer to its terminal velocity

The game has different properties for boat specification in terms of speed, acceleration, stamina,
maneuverability and robustness

Stamina decreases over the duration of the race

How much maneuvering and changes of speed (acceleration) a boat is doing should further
contribute to the increase in tiredness

Stamina replenishes if movements are conservative and stamina is fully restored between the legs

Stamina would restrict movements (changes of speed or maneuverability) and this effect would
increase as stamina decreases

Boats must remain in their lane for the duration of the race. Leaving the lane should resultin a
penalty at the discretion of the chief race official.

Colliding against obstacles will progressively reduce the robustness of the boat, until it breaks down
(resulting in the end of the game).

Some obstacles should start stationary, but then in later legs start becoming more dynamic and
moving left to right. Some obstacles e.g. bridge pillars are permanently stationary.

Game should not display too many obstacles in order fo not clutter the screen

Game should display obstacles in the river during the race, like clueless ducks and geese, or tree
branches floating down the river

The game should increasing the difficulty level with every subsequent leg by changing the number,
speed and type of obstacle (dynamic or static).

During gameplay the game should overlay/display the difficulty level clearly and this should update to
show any changes to the difficulty level based on the leg of the race.

The user should be able to see the controls for how to move the boat by pressing a certain key.

At the start of the race there should a tutorial and/or overlay of controls that are clearly visible and
understandable to a new player.

The competition must consist of 3 "heat” legs and a final, with the fastest from the 3 heats racing in
the final

n the final, the 1st place team will receive a Gold medal, the 2nd a Silver medal, and 3rd a Bronze
medal.

Each race should have 3-6 boats.

The game view should be fixed in a central position for the user's boat and shows boats around the
user's boat {but not all of them).

During race, screen should display user's position in race, distance remaining, stamina, speed,
acceleration, and damage

When a penaly is incurred a notification should be displayed on screen

Before starting the race, players should be able to choose the desired level of difficulty. Difference
between levels lies in the number of obstacles, amount of damage received when colliding with them
as well as penalty for crossing the lane.

The game must provide facilities that allow players to save the state of the game at any point and
resume later by loaing the saved progress. Load option available in the main menu.

There must be five power-up packs floating down the river (spawned randomly) that can be picked
up by boats. These packs should restore robustness, or temporarily improve some other
characteristic (e.g., speed).

Updated Functional Requirements Table

1D Description Priority
UR_PLAYABILITY The game must be playable with a keyboard and mouse M
UR_BOAT_SPECS Every boat must have a unigue spec in terms of speed, acceleration, maneuverability and robusiness. M
Over time paddlers get tired, speed, acceleration and mensuverability decrease progressively during
UR_TIRED_OVER_TIME every leg M
Every boat must remain in its lane for the duration of the race. Leaving the lane may resultin a
| UR_LANE_PENALTY penalty at the discretion of the chief race official. M
Teams may find obstacles in the river during the race. like clueless ducks and geese, or free branches
UR_OBSTACLES floating down the river. M
Coliiding against obstacles will progressively reduce the robustness of the boat, until it breaks down
UR_COLLISIONS (resulting in the end of the game). M
UR_DIFFICULTY Every subsequent leg will increase in difficulty level. M
The competition must consist of 3 'heat' legs and a final, with the fastest from the 3 heats racig in the
UR_LEGS final M
In the final, the 1st place team will receive a Gold medal, the 2nd a Silver medal and the 3rd a Bronze
|UR_AWARDS medal. M
UR_PERFORMANCE The game must look smooth whrn played (30fps +). M
_UR_JA\."A Must be coded in Java programming language. M
The number of teams should be consistent with the number of legs so that races have an appropriate
UR_BOATS_NO no. of boats and the race should not be cluttered. 5
During races, the user should be able to information such as position in race, distance to go,
UR_INFO_DISPLAY acceleration, stamina and damage taken. 5
UR_ACCESSIBILITY The first leg/level should be more ible so that beg can learn the dynamics of the game. S
UR_FINALS_PLACING The fastest time of the three legs will be used to place teams in the finals. M
The game must be exciting and engaging to the player, simulating the experience of the real York
UR_EXCITEMENT dragon race. M
UR_LEVELS The game must allow players to choose between different levels of difficulty: Easy, Nermal and Hard. M
The game must provide facilities that allow players to save the state of the game at any point and
|UR_SAVE resume the saved game later. M
Must have five power-up packs, which can be found floating down the river and be picked up by
UR_POWER_UP boats. M
Updated User Requirements Table
1D Description UR reference
FR_PLAYABILITY The game must take the user's key-presses as input for controlling their boat in-game. UR_PLAYABILITY

UR_BOAT_SPECS

UR_BOAT_SPECS
UR_TIRED_OVER_TIME

UR_TIRED_OVER_TIME
UR_TIRED_OVER_TIME

UR_TIRED_OVER_TIME
UR_LANE_PENALTY
UR_COLLISION

UR_OBSTACLES
UR_OBSTACLES

UR_OQBSTACLES
UR_DIFFICULTY

UR_DIFFICULTY
UR_DIFFICULTY

UR_ACCESSIBILITY
UR_LEGS

UR_AWARDS
UR_BOATS_NO

UR_BOATS_NO

UR_INFO_DISPLAY

UR_LANE_PENALTY
UR_LEVELS

UR_SAVE

UR_POWER_UP



Architecture:

Abstract architecture

We decided to add three new entities to the abstract architecture, most notably class
Powerup which represents the power-ups that float down the river and can be picked up by
boats. Powerup inherits from the abstract class MoveableObject, since it is supposed to be
moving along the lane and is similar to the Obstacle class. Like Obstacle, it also implements
the CollisionObject interface, although certain functions within the Interface were changed
such that any object colliding with some other object, other, will know the type of other and
can react accordingly (ie. Power-ups won’'t damage the boat, obstacles will). Classes
SaveManager and Difficulty were also added.

C )Powerup A ) Obstacle C )PlayarBoat C JAlBoat —|(&)Boat CollisionCbject] MoveableQbject| : GameObject|
> =

Concrete architecture

The concrete architecture itself has not changed much as an outline of classes, although
actual implementation details differ significantly. Much of the superfluous and unnecessary
code has been removed or re-implemented in a cleaner or more efficient way.

Major changes to the code include:

1. The addition of the Powerup class which behaves similarly to the Obstacle class but
grants bonuses to the boats rather than penalising them. Required for
UR_POWER_UP.

2. All CollisionObject instances now have a “value” that the Al uses to decide whether it
should steer away from it or towards it, which allows the Al to play more
competitively.

3. The original artificial intelligence has been stripped out and replaced with one which
is much more competitive with the player, and far better optimised. As beating these
constitutes 90% of the gameplay, this helps with UR_LEVELS, UR_EXCITEMENT,
and UR_PERFORMANCE.

4. The Difficulty class has been added, which is implemented as a Singleton and tracks
the global difficulty setting. This is accessed by many classes and allows changes to
difficulty to be made quickly and centrally. Required for UR_LEVELS

5. A more robust Ul system has been implemented, including Buttons, Switches,
Scenes, Labels, and Images. This represents a significant improvement over the
original approach which was to manually define these in game states themselves.

6. Many classes have had variables and functions removed where they have been
unnecessary, primarily in Scene* classes and in BoatRace where a lot of sprites
were stored, and references to single objects allow for the removal of checks against
entire lists to find one instance of a class.

7. The project itself has been updated to Java 8 to take advantage of new (2014)
language features for quicker and cleaner development.



8. The project has been refactored from snake_case to camelCase for fields and
variables as this is Java convention and less confusing.

9. Large if-statements connected by && have been removed to improve readability as
well as performance in some cases

10. Almost every class field has been moved from the protected to private access level to
prevent accidental change of values by external functions that should not be able to
access these.

11. The entire game now calculates the time between frames and uses this for
movement-related calculations rather than assuming the game runs at 60 frames per
second, ensuring consistent movement even if the game is performing poorly. Whilst
it doesn’t directly improve performance, it should make the game feel smoother if it
does perform poorly, somewhat helping mitigate if UR_PERFORMANCE is not met.

12. All non-inner classes have been made public so that they can be used in unit testing,
and because exposing classes is generally a lot safer than exposing fields.

13. Collisions have been reworked to use a quadtree for storage of objects and lookup
rather than originally as a list, which has served to make some critical parts of the
code up to 100x less CPU time intensive. This has almost completely eliminated
anything blocking UR_PERFORMANCE.

Methods and Plans:

Method and Tool Selection

Both our team and Team 12 have opted to follow an agile development methodology,
specifically Scrum. The Scrum framework is designed for smaller teams, making it perfect for
us and our project. In Scrum, goals are broken down into small tasks which are completed
within a set amount of time known as a sprint. We decided to have small week-long sprints
as we had official supervised practical sessions once every week.

Most of the tools used by Team 12 coincided with our choice. Just like Team 12 we used the
following tools for completing the tasks in our project:

e Google Drive for storing documents and other files

e Discord for communication

e GitHub for source control

e Google Docs for writing up documents

Additionally, we used PlantUML for creating class diagrams and Javadoc for generating
HTML documentation of the source code.

For task management we decided to use GitHub Projects. It is a kanban board-style to-do
list allowing for the creation of boards and cards with tasks, which all developers can access
and modify. This was ideal for our chosen development methodology as it allows for tasks to
be broken down into smaller parts and put on a board where anyone can pick and develop



them, then move to the “completed” board. We favoured GitHub Pages over Trello, which
was used by Team 12, as we didn’t need any additional features provided by Trello (e.g.
colour coding and labelling) and having everything in one place was more convenient for us.

In addition, we supplemented the Method Selection and Planning document with additional
information such as information about the selected tools, justification, and possible
alternatives to some tools.

Team Management Approach and Plan

We decided not to change the plan and team management approach written by Team 12.
Instead, we added our own approach and plan as an extension.

Our approaches are quite similar due to the fact that both our teams used Scrum
development framework along with Discord as the main way of communication. Unlike Team
12, who split their team into sub-teams for tackling different parts of the assignment, we
divided tasks between individual members of the team. In the approach of Team 12, each
task had a leader as well as one or many collaborators which ensured good implementation
and involved frequent communication. In our approach, each member of the team was
primarily responsible for one task such as writing and updating one of the deliverables or
implementing a specific feature of the game. One of the advantages of our method is that
everyone had to focus on one or few specific tasks, which allowed for more thorough and
deep research and better understanding of each task.

For Assessment 2 we created a new Gantt chart to keep all things separate and focus on the
new tasks. We decided to keep Gantt Chart created by Team 12 and supplemented the
document with our own Gantt Chart (can be found on our website:
https://eng1-team-11.github.io/ENG1-Team-12/Documentation2/Gantt.pdf) as well as
screenshots evidencing our work on the assignment.

We deleted some of the content provided by Team 12, namely sections ‘Key Event List’ and
‘Announcements’, as it overran the page limit allowed for Method Selections and Planning
deliverable and went beyond what was required.

Risk Assessment and Mitigation:
Our Approach and Presentation

Coincidentally, Team 12 had a similar approach of assessing and presenting risks. We both
used Low/Moderate/High scale to assess the likelihood and severity of possible risks, as well
as tabular format to present them. This system is clear and easy to understand, which
makes it perfect for small projects like ours.

L]

Team 12 and our team both divided risks into three categories: “Project”, “Product” and
“Business”. “Project” category was assigned to the risks that might affect our project
schedule and progressing speed. “Product” category is for the risks that may potentially

affect the quality of the game, for example, any hardware or software issues. “Business”


https://eng1-team-11.github.io/ENG1-Team-12/Documentation2/Gantt.pdf

category was assigned to the risks that may affect the success of our product in the market,
in our case - success of using the game for promotional activities organized by The
University of York Communications Office.

In order to identify the risks associated with the new requirements for Assessment 2, we first
reviewed Assessment 1 requirements, specifically those that had not been implemented.
Then, we went through our project plan to determine all possible factors that can affect the
quality of the final product.

Furthermore, we chose a different format of presenting IDs of the risks, since the old format,
used by Team 12, took up too much space and yet was not informative, making it
inconvenient for us. We also removed the ‘Backup Owner’ column, since having one risk
owner was enough for our team.

Risks and Mitigation

We decided to keep all the risks identified by Team 12 as they all were possible and
coincided with the risks that had been found by our team. Additionally, we supplemented the
table with other risks that we identified while working on Assessment 1&2 as well as after
reviewing the new requirements for Assessment 2 (R10-R21)

The entire table can be found at:
https://eng1-team-11.github.io/ENG1-Team-12/Documentation2/Risk1.pdf, with R10 starting

at page 4

ID Type Description Likeli Seve Mitigation Owner
hood rity
R10 Project Miscommunications and M M Every team member must inform All
lack of clarity, e.g. several others about the parts of the project
members doing the same they are working on, ask for
task, misunderstanding clarification when uncertain about
design decisions something

R11 Project Team is running out of
time

Meet up more frequently and make  All
sure every team member is involved

R12 Project  Conflicts within the team Try to resolve a conflict or minimize Al

its effect on the projects

Contact the lecturer and make sure  All
all question are understood and
answered

R13 Project  Misunderstanding some
of the assessment
questions

R14 Business The customer is not
satisfied with the game
design/implementation

Set up a team meeting and discuss  All
possible



https://eng1-team-11.github.io/ENG1-Team-12/Documentation2/Risk1.pdf

R15

R16

R17

R18

R19

R20

R21

Product

Product/
Business

Project

Product

Product

Product/
Project

Product

Product doesn’t meet
some user, functional or
nonfunctional
requirements

Product doesn’t meet the
customer expectations,
e.g game is too complex,
too simple or not
enjoyable

Lack of skills/ knowledge
of team members

Game is not playable on a

low spec computer (i.e.

dual-core laptop with 4GB

of RAM)

Game logic does not work

as expected, e.g.
durability doesn’t reduce
when colliding with
obstacles, difficulty does
not increase/decrease
when changing the level
of difficulty etc.

Misunderstanding the new

requirements or some of
the questions of
Assessment 2

New requirements are not

implemented for some
reason

Review the requirements at each
stage of the project and make sure
all of them are met

Organize a team meeting and
discuss possible changes or
improvements

Team members must learn/improve
their skills through taking online
courses, reading relevant literature
or using any other resources

Set up a team meeting and discuss
what adjustments can be made to
the game to run on a low spec
machine

Members responsible for the
implementation must go through the
code and find any logic errors

Contact the lecturer and make sure
all question are understood and
answered, and new requirements
are clear

Review the requirements at each
stage of the project and make sure
all of them are met. Make sure
someone is working on each new
feature of the game.

All

All

All

Coders

Coders

All

All



