Engineering 1
Group Assessment 2
Architecture Document

Cohort 2
Team 12 & Team 11

Architecture Representations (3a)

Architecture Development

We used a UML class diagram to describe the architecture visually. We used tools
such as PlantUML to create the architecture representations. PlantUML is a markup
language for UML.

Abstract Representation

For the abstract representation, we chose to make a simple UML component
diagram. This functioned as a backbone to begin implementation and allowed the
team to agree on a basic structure. We have grouped classes (abstract classes and
interfaces) for different features. This heavy object oriented approach allows the
solution to be very scalable due to the modularity so this is useful for future
development of existing and new features.

Simplified Component Diagram (See appendix 1)

The following abstract representation section contains screenshots of this diagram
which is embedded in full in the appendix as well as github with generated PlantUML
code. In the class diagram the following symbols are defined as follows:

e A - Abstract Class

e | - Interface
e C-Class
Arrows - represent child classes inheriting from parent classes
D . @Gameomect
— al
@ CollisionObject @I MoveableObject
TR o
i /v P ™ . ¥
@Po‘.vemp . ®Boa! @ Obstacle!
b7 a1, 4 av)

>4 [
F 1

| /
@Alaoai @Playersoal ©0bstac\83ranch

The GameObiject is what everything visible in the game is derived from. And from the
diagram you can see that the main objects in the game Boat and Obstacle inherit
from MoveableObject as well as the CollisionObject interface. In Addition,
PowerUpPack object inherits from MoveableObject.

@ Scene

.. =

€ ’
=il / N ~

@Su:en-:-Tu'lonal @ ScenaStanScrean @ ScenaOptionsMeanu @ ScenaMainGams

For example, for controlling the environment of the game we have scenes which
inherit from the main Scene Interface.

X
@ Obstacle!
.
——
I
4 e
; J\\ —
T— ﬁ“**—._
@ ObstacleBranch @onstacleﬂaatingsranch @ ObstacleLaneWall @ ObstacleDuck

We have a group of classes which inherit from the abstract class Obstacle which
helps to share and differentiate attributes between obstacles. This means further
obstacles can be added with different properties for example varying speeds and
rotation. Both Obstacle duck and branch inherit from abstract class obstacle.

Concrete Representation

The class diagram [2] can represent the updated representation after implementation
of each class and the relationship between each class. Therefore you can see how
the abstract and concrete relate with the inheritance diagram [3] which shows the
attributes and methods of each class. Screenshots from each document are below
and the diagrams in full are in the appendix as well as github with generated
PlantUML code.

How Scenes relate to each other and PixelBoat (the game class)

Hovap) \ | ey 4\
|

1\
R

Pk \ T Sia
©SceneMamGame ©SceneOpt|0nsMenu ©Scene$tan8creen ©SceneTutona| @ScenePreRace

Screenshot from part of the class diagram [2]

stanScrzen /

|
© rroson

3 SprteBatch batch
2 float ctaTime.

@ vadcreate()

@ Vot with, it hoigt)

nextScene JcunentScens

@ oo

optionsMznu | tutorial

ok draw(SprteBatch batch)
k1

resulsSerezn
update(foetdetaTine)

o resize(rt widh, it height) \
void showt)

%

© © © sceneTuonal (©) sceneResutssereen B
SmscHED SmscoE D SuscED
B sasaen SuzE] e
Eoreere e vt 2 Spe aspete Viewport vewport
it oo encCanera iemera
nogromcCanera canera 2 uscensuseens

4 SceneSanScreent)
© void fioize()
.

@ SceneOptonsiien()

> vou finaize()
M

& SceneTutor)

& SceneResutsScreen)

(o ceamime GF
© vld resize(nt width, o Peight) B
0

© void o

© it updatelflost dekaTime)

© it upcte(foat detaTine)
°

esiza(nt widh, it eight)
show()

how()

pdiate(foat detaTime)
© void resize(nt wicth, in heght)

© void resize(it width, it height)
© void showl)
© void setBoats(List<Boat> bosts)

mainGame

}
© soov

© Sting SAVE NAME
asa

Menager(ScansiianGane nanGane)

o=

(©) ssenswaincame

preRace

\

v

O scere D

© seeroborae

B
{8 rregnpec -
O PBOATE e mace SnxmeD
O it GROUPS_PER_GAME s ‘u:c:"”‘
2 Scenatancons) s W
§ Sy oy
.
S WA fpmsllon ota ire) © int update(float cletaTime)
‘old esize(int with, int height) . Vﬂ\:ﬁl'j{sﬂmﬂ%h b."m
Jod © void resizefint wi
e € il i)
o e e oz

o s sty
© Payersioat get

T

Screenshot from part of the inheritance diagram [3]

@

 Tape powerupTipe

© o

© Pawerup(et x iy, Type poweruType)

< Oustitrt - .t . St

cTestue

Testre . i ramacourt)
idhacCalidd(Colisondtiect e
e

 fea getCatison\

@ oamecorn

@ soarce

0 Bitmapront ot
 Texture laneSeparator

e
o pacaisor sy

 Teture startBanner
o

O Toxture toxture

0 Sprte spr

© TestursRogort ratoregons
0 Bookeanisshowr

SO T R S
it
© GancOnecit .yt . . Tewae esae, bt oty
 vold finalze()

© vold setArimatonFrame(it)

© Texture bleachersRght
O floot BOAT THE ESTMATION BIAS

o
O REND Y
o

© boclean firished
0 ong ttalFames.

& BostRace(List<Bost> bosts, PlayerBoat payer)

© Cacares pest)

© woveonet

© opstacenuck [@ owswassann_|

@ ovect

 foat maxspeed
 foat speed
 foat drag

© et TEqURE vEGHT

& ObstaseDuck(rt» i)

2 Oostoel il T

‘ '© GostacleBranchirt x, it y) I

ObstacieFloatingBrancn

et anen)

© fom ooy

'© HovableOblect(ntx,nt y, It w, nt , Srng texturePat)
© HovableObject(rt . int y, it W, nt h, Srng texturePh, it frameCount)
& Morelsbic(t ., it e, ramacart

)

1a)
2 vadsencestratonion scaceraion)

o vl oe(iot o)

angeSpeed(fo

° Stingtext
© void drawLegTimeDisplay(SpeteBatch batch, Boat b
© void generateTimesForUnfiishecBoats()

»

lansObjects

@ casonopien

ToaesCoRdedCobsirOuec aen
ColisionBounds getBounds»()

oo howr)

oat gtColisonValue()

/41 l>

lboats

player

)

These sections of the inheritance diagram [3] demonstrate how the Obstacle classes
interact with each other and BoatRace.

@ v

Uit ortogers mgTimes.
st

boelean hasSianedL g

@ ovee

© Boati . vt 1)

Vo asColdad(CollsanOtictoher)

4 Qostoceitx 1, et

Wit Teture i

VodrasCobbaCaonsHec b
© foatgeColisanVate()

|

¥

. float amount)y
2

me)

HaTime)

maxSpeed)
float deta)

jekta)
a acceleration)

. int w. int h, String texturePath)
¥.int w,int h, String texturePath, int frameCourt)
Y. int w,int h, Texture . int frameCount)

@

CollisionObject

void hasCollded(CollisionObiect other)
ColisionBounds getBounds()

boolean isShown()

float getCallisionV/alue()

\

4
@© Paweon

© won

oo an vome
OrthograpiicCanera camera

@© ovsuceLanewan
prTrar=

& ObstaceLaneal(r x it y. Terture)
o sethrimatcnFromet)

© fos DETECTON THRESHOLD

0 Terture drabityToxtre
5 SprtestominoBer
1 Sprte bt Bor-

0t spacD

5 o accueraborCockionn

5 bodean frward.ocked
© fosl FORNARD. LOCK_THE

Soat getColson/aus()

< Aot . ok ey

© bocanisshount

Vector2 geRayFrepord()

o sttt

©) obstacte

-

. ok, ok e

= o e Tant s LA BNt

OrthograhicCanera getCaneal)
foat getUB AN

a
& Obstacie(irt x, i

© void hasColidzd(ColisionObject other)
@ foat getColision'alue()

Lint y, it w, int h,
int y, int w, It h, Texture 1, int frameCount)

tring

© vadroset)
8 void updtelssptesi)

7

o
o

0 String
O it currentfiaceTime

T

©) soat

0 List<irteger> legTimes.

float cur bty

© float durabityPerkit

float maxSpeedPerHt
float stamina

float staminaUsage
float staminaRegen
name.

boglean hasFriishecLeg
boolean hasStartedleg

Boat(irt x, it y)

woid hasColided{CalisionOble
woid accelerate(float detaTmi
void upclate(fiost dekaTime)
weid changeDurabiity(float de
weid changeStaminalfloet dett
String getName()

woid Sethame(String neme)
o setlegTime()

woid setl egTimedint time)

woid setl eaTimesfList<irteas

The Boat class (which is a GameObject and Movable Object) has children
PlayerBoat and AlBoat. An example of a CollisionObject (which inherits from
CollisionBounds) is an Obstacle and this gives it functionality to collide with other

GameObjects.

Justification for Architecture (3b)

Justification for the Abstract Architecture

Object oriented programming was used as it offered a high level of abstraction while
fitting with the required language of Java.

The class inheritance structure is a product of the design process the team agreed
upon, whereby, all high level features were sketched out, then all common features
were placed into a common abstract class. This allowed for the inheritance structure
to stay simple and now get bloated with unneeded features.

An example of this would be how it was decided that we would need a class for the
player’s boat and a class for the Al's boat. These have the common feature of being
a boat, thus a common superclass of “Boat” was created.

The above approach was used for all visible elements of the game (boats, obstacles,
etc) but it wasn’t appropriate for all features. For components such as choosing what
to show on screen at a given time. To solve this problem, scenes were created. Each
scene holds all the relevant attributes, functionality to update each frame and
functionality to draw each frame. This allowed for each scene to be separate and
completely self contained. Interfaces were also used to ensure that every scene had
the required functionality implemented.

Justification for the Concrete Architecture

The team decided on using libGDX as it gave easy and intuitive access to drawing
functionality. It also allowed for a quick and easy setup of things such as window
dimensions and user input. Building on top of this intuitive platform using our
composite OOP approach allows new developers/teams to quite easily expand
functionality of features and add new ones without facing comprehension limitations
due to the simplistic design decisions taken. Due to libGDX being a popular game
development library for Java [4] the performance and support makes it a sufficient
choice for future development.

The architecture broke down each component into small classes so that different
members of the group could work sequentially, with all their changes on only one file.
This made version management much easier because fewer conflicts between
commits occured.

Justification Relating to Requirements

Below is a list showing how each requirement was satisfied in the concrete
architecture:

UR_PLAYABILITY - A third party library called libGDX was used, allowing for mouse and

keyboard inputs to be handled. Additionally, every scene’s update function is required to
handle mouse and keyboard inputs.

UR_BOAT_SPECS - The abstract “Boat” class contains attributes and a constructor
allowing for different specifications of boat when a new Boat is instantiated. The “PlayerBoat”
class additionally has a method to change the current specification, allowing for changes
between legs if that becomes a requirement in the future.

UR_TIRED_OVER_TIME - One of the “Boat” class attributes is a stamina value and a
stamina used per frame value. These function as a measure of tiredness for the player.

UR_OBSTACLES - An “Obstacle” abstract class was made to house all common
functionality for obstacles. This also allowed for polymorphism to be used when storing
different types of obstacles, increasing code readability.

UR_COLLISIONS - A “CollisionObject” interface was created that the player and all other
objects implement. This ensures that everything that can be collided with, has the
appropriate functionality. Boats also contain a durability attribute, which is decreased every
time the boat collides with an object, fulfilling the second half of the requirement.

UR_BOATS_NO - A “BoatRace” class was created to house all functionality associated with
a leg of the game. This spaces out boats so that each boat has an appropriate amount of
space in their lane and isn’t cluttered.

UR_INFO_DISPLAY - The “PlayerBoat” class’ draw method contains functionality to draw
information such as how tired the player is and how damaged the boat is. This ensures that
whenever the player is playing the game (i.e. when a PlayerBoat is on screen) the
information display is shown.

UR_FINALS_PLACING - The scene responsible for the main game contains a check to see
if all 3 qualifying legs have been run, then it selects the fastest boats to race in a final. If the
player is not one of the fastest, the final results scene is switched to.

UR_PERFORMANCE - LibGDX was used for drawing to the screen and handling user
inputs. This is a fast and efficient library that enables us to run the game at the required level
of performance.

UR_POWER_UP - Power-ups are implemented using the “Powerup” class. Rather than
superclassing this several times, power-ups have a type and the effect is handled by
whatever object is receiving it.

UR_LEVELS - Difficulty is handled by the “Difficulty” class, which is implemented as a
singleton. This tracks the global difficulty level and stores parameter modifications which
can be applied to the boats and obstacles to change the difficulty.

UR_SAVE - Saving is managed by the “SaveManager” class, which can store and load
important information about the race after being called, allowing the user to save and load
the state of the race.

UR_AWARDS - Upon completion of the third leg of the race the player will be presented with

an end screen, taking the data from the Main Game scene in order to update the Race End
scene.

Appendix

Due to the size of these diagrams they have been placed here and are referred to above
using specific screenshots.

[1] Simplified Component Diagram for abstract representation

‘@EDQ(RBCE |©Cﬂ"\5\ﬂnaﬂunﬂ5 ®Gam90D}eC!
} { I { e -
g \

|©Resu\tssueen| |©RaceThread| |© Dn’ﬁuu\tyl |®Coms{on0bjec! ‘@MUVG@DIEOD}SC! I
I I [I | [1
L L L L 1 []

C
I 1
L 1

1
© SaveManager @Powerup A) Boat @ Obstacle,
] L i I s

|©S:EﬂeTulurial| ‘@Scenestansweenl ‘@Scenef‘
I | [1 [
L L] L

E

&

L T =
A d e SN
/ \ .
] / g e
_,,
‘@NEDH! ‘@PHYETBEB(|©Dhstamaaranch ‘@ODS(QC\EF\DHUHQE[BHCH }@DUSMHELQHEWQH ‘]@ QObstacleDuck
f 1 [1 ! 1 ! I ! 1 I 1
L 1 L 1 [1 L 1 [’

[2] Inheritance Diagram for Concrete Representation

1

© CollisionBounds

©Dumcumr

©App|lcat|on!\dapter

Package desktop \

Package ui \

i

@PixelBoat

]

@Sa\rel\l‘lanager

©SceneResuItsScreen

©SceneMainGame

@SceneOptionsMenu

@ScenestanScreen

@SceneTutorial

©ScenePreRace

©BoatRace

s

N

@ GameDbject]

CollisionObject]

© MovakleOhject

i

|

5
@Obstacle

@Powerup

i

©OhstacIeLaneWall

@OhstacleDuck

@OhstacleBranch

]

@ObstacleFlcatingBranch

3] Class Diagram for concrete representation

@ ooty

® comron
e
S

' Difbaty pereimrce
i setieutyLar D v irhedyLave) |
st L —— i
er2 giBrg 7 gttt}
v syl # 2 o LoCo}
o e
st}
[e
Sierel

@ roen

et e [
4 e
i BT ekt v e

'\ ssutsSorzon G

[@ s ; [pokesl
Dtz o | Dt egthmtr
S

it Siempant
0o saricCanera fGancra
A Lticere wtiere
e]

e frzni it o dstaTire)

ey
B Vinmport et

= aer
v drpeiietach et
M

= as aw

T o e e e, S 64
e e reapa S |
| P)

iy

ol crargetpesiical de)
B il st el b b)

-

@ o

© e sementiee
 Fonenlen oLy, Thge fewsnaTyie]
et e}

-
® 7 g psen
W S setT ety .
 Feel potaint et

= L 5
W

D ELULBAR AETH
@ e

o
O Fa CETER T Ch_THAESOLD 0 Tadurs i Tesirs
o pammay, £ Zarts it

® G
T

© oo

ey

arty Tevuat)

8 s gaconertinat)

@ Aiawed o, 1y fom getEpent]

[t
]
Tast tuny, st g, oA

v Tk S e Ll el cTOES)
el

Ul Package

(©) Button

© Sprite sprie

© Texture hoverTexture
© Testure reguiarTesture
© Texture pressedTexture.
© boolean isPressed

(©) 1mage

@ Button(foat x, floet y, String texturePeth, String pressecTexturePath, Siring hoverTexturepath)
© Button(float x, float , String texturePath, String hoverTexturePath)
© boolean ishiouseinside(fioat mouse, float mouseY)

© veid upete(fioat mouseX, float mouseY)

® void draw(SpriteBatch batch)

© Sprte getSprie()

© float getWidth()

© float getHeight()

© void onPress()

© void onRelease()

© void onHover()

0 Sprite sprite

© Imags(fioat x, fioat y, Sitring
© Sprite getSprite()

© void draw(SpriteBatch batch)
© void Update(fioat mouseX, fioat mouse'()

texturePath)

@ urrement

_ [void chaw(SprtcBatch batch)
= veid update{fioat mouseX, float mouse)

O BimapFort fort
O GlyphLayout glyphLayout
0 float x

loat y
O boolean drawCentreAligned

©) uissene

0 boolean mouseReleased

UElemert->_s

© Label(float x, flogt y, float size, Siring text, boolean drawCertreAligned)
B yoid drawCenlreAligned(SpriteBatch batch)

B void drawLeftAligned(SpriteBatch batch)

°

© vaid update(Toat mouseX, foat mouse'r)
© void sefText(Sting text)

© UiScene()

© void draw(SpriteBatch batch)

© void update(float mouseX, float mouse)

® void addElementlint layer, String icertifier, UElement element)
© void clear()

@ void lockScene()

© swisn

2 boolean state

© Switchiflost x, float y, String texturePath, String pressedTexturePath, String hoverTexturePath)

© void update(float mouseX, float mouse'r)

© void onHover()

© void onRelease()

4 void setState(boolean state)
© vold onState0ft()

© void onStateOn()

Bibliography

[3] Introducing Types of UML Diagrams, Lucidchart Content Team
https://www.lucidchart.com/blog/types-of-UML-diagrams

[4] LibGDX https://libgdx.badlogicgames.com/index.html

https://www.lucidchart.com/blog/types-of-UML-diagrams

