
Engineering 1
Group Assessment 1

Requirements Document

Cohort 2 Team 12

Eliciting requirements
A brief statement was asked for that describes the idea/issue the customer was facing. “I
would like to have a game developed and this would be a single player game and should
capture all the excitement of these events: the Dragon Boat Race that happens in York
every year". This, combined with the listed requirements in the product brief, gave us our
initial requirements to start the process of eliciting requirements.

Upon reading requirements listed in the brief, it was decided that some of the features were
vague and could be easily misinterpreted in the development. Thus, questions were created
such as:
“What specific penalties would you want when you said ​‘Every boat must remain in its lane
for the duration of the race. Leaving the lane may result in a penalty at the discretion of the
chief race official.’​?”
These allowed the requirements of the client to be understood in a more definitive way. For
example, the answer to the question above was to add time to the players run timer,
decreasing the player’s “score”.
This was important because the type of penalty was unclear and it would be easy to have
gone with a wrong implementation.

During the meeting with the customer, the importance of some of the aspects of the game
that weren’t explicitly stated in the brief, such as the general appearance and UI of the
game, were asked about. This allowed the priority of certain features to be categorised,
helping us to plan accordingly. For example, animations and graphics are a nice thing to
have but were stated as something that can be added later, implying that they are of low
importance and shouldn’t be worked on unless there is adequate time spare.

Enquiries were made into environmental constraints, like the type of hardware the game is
expected to run on (normal computers) as well as the expected input system (standard
mouse and keyboard input). This confirmed assumptions, ensuring the requirements were
accurate, leading to a game closer to the clients wishes than otherwise achievable.

The requirements were formatted as a spreadsheet because it was agreed that this would
be a clear way of communicating requirements between the team members and the
stakeholders. The spreadsheet was split into 3 sections; User Requirements, Functional
Requirements and Non-Functional Requirements. To make sure these were done to a high
enough standard, research was done into user requirements engineering[1].

Environmental Assumptions, Associated Risks and
Alternatives

Clarification was needed for the SSON due to it being vague and lacking detail. The customer was
asked if they could clarify how one would go about “capturing the excitement of the event” as
mentioned verbally by the customer and stated in the Document Brief. Questions were asked if this
was related to the game difficulty and user reward trade-offs. This will be referred to this as
UR_EXCITEMENT.

The customer expanded that he wants an increasing level of difficulty and that he wants the first level
to be accessible and easy to the player so the player learns the dynamics of the game. As you
progress through the game and legs of the race, the difficulty would increase. This ended up being an
example of requirement negotiation and this clarification with the customer helped to develop the user
requirement UR_ACCESSIBILITY.

UR_TIRED_OVER_TIME ​- There was a bit of confusion about one of the key mechanics in the game
- stamina - which prompted us to send an email to the customer asking for clarification. Shortly after,
the team received an email back explaining how the feature should be implemented. The risk was
wrongly assuming how a key game mechanic would function.

UR_PLAYABILITY ​- the team clarified with the customer that the user would be using a personal
computer to play the game and owns a keyboard and mouse which are connected to the computer.
The risk is that they do not have these, in which case they will not be able to play the game. There are
no alternatives?

UR_OBSTACLES ​- One of the user requirements in the brief was to have obstacles in the race that
the user has to avoid, so this will be included as a must-have requirement. It will be assumed that the
game is working as it should and that the user is able to join a race. The risk is that the obstacles do
not spawn or function properly. An alternative would be not to have them.

UR_LANE_PENALTY ​- It was vague what kind of penalty is given to the player for crossing their lane
so this was clarified with the customer for a specific definition of “penalty”. The response was that
extra time should be added to the players “score”. This being, the time it took them to complete the
leg.

UR_PERFORMANCE ​- It was important to have a game that runs well and looks great on screen so a
frame rate of 36fps + is the goal. It is assumed that the user is using a suitably up to date computer
with a modern operating system which runs at a good speed. The risk is that the game does not
perform smoothly. An alternative is having a game that runs at a slower frame rate on purpose.

UR_INFO_DISPLAY​ ​- It is important that the user sees information about their boat and the leg that
they are currently racing so that they are well informed when they make control decisions e.g.
paddling faster/slower, so this is defined as a should-have requirement. It is assumed that the user
has a display monitor and that their game is working correctly. The risk is that the information does
not display and the user cannot see it. An alternative is to use audio to tell them info such as
remaining distance, stamina and speed.

UR_COLLISIONS ​- Again, this was one of the requirements set out in the project brief, so it is
included as a must-have requirement. It is very important that the game is realistic, so it makes sense
that crashing into objects should damage the boat.

UR_AWARDS ​- At the end of the race, the winner and good performers should receive a reward, and
it was said in the brief that the 1st place boat should receive a gold medal, 2nd place silver, and 3rd
place bronze. It is assumed that the user finishes the race and their game is working correctly, and
they have all the necessary controls (keyboard and mouse). The risk is that the awards do not work or
display. An alternative is just to display the times and order of the boats at the end of each race.

UR_FINALS_PLACING ​-This was mentioned in the brief, so it had to become a user requirement. It
is also exactly how it works in the real York Dragon Boat Race, so this captures the real event very
well. An assumption would be that the user has started a race and finishes all 3 legs, so that the top 3
boats can be picked to go into the final. The risk is that the code does not work and picks the wrong
boats to go into the final. An alternative would be to have all boats from the first 3 legs in the final.

UR_BOATS_NO ​ - There was uncertainty on how many boats should be in the race. This was for two
reasons, the more boats in the race the harder each race would be, but also being able to see all the
boats on your screen, without the size of the boats being too small to be practical. The customer was
asked about this problem, who responded explaining he wanted ~3-6 boats in each race. Some other
options were to increase the number of boats the harder the difficulty setting, since you have to beat
more boats to win.

UR_BOAT_SPECS ​ - The speed spec of the boat wasn’t very well defined, it is assumed it meant the
terminal velocity of the boat, In the project brief it asked for unique stats for each boat, there are a few
ways of solving this, either creating several boats that the user would be able to pick from, or let the
user create their own boat allowing them to change things like the size, paddlers.

UR_LEGS ​- Each race that the user does in the game should have 3 heat legs, and the fastest boats
from these 3 races are picked to go into the final. This requirement was in the brief, so it was decided
to set it as a must-have requirement. Assuming that the user’s game is working and that they can
enter a race. The risk is that the race does not have 3 legs for some reason. An alternative would be
to have a different number of legs in each race?

UR_EXCITEMENT ​- The customer was very clear during the questioning that the game needed to be
exciting and engaging for the player. This seemed to be a very important aspect needed for the game
to be complete.

User Requirements Table (​We use the MSCW Scheme for Priority listing​)

Functional Requirements Table

Non-functional Requirements Table

Bibliography

[1] I. Sommerville, Software Engineering, Pearson Education, 2008, pp. 101-122.

