
Engineering 1
Group Assessment 1

Architecture Document

Cohort 2 Team 12

Architecture Representations (3a)

Architecture Development
We used a UML class diagram to describe the architecture visually. We used tools
such as PlantUML to create the architecture representations. PlantUML is a markup
language for UML.

Abstract Representation
For the abstract representation, we chose to make a simple UML component
diagram. This functioned as a backbone to begin implementation and allowed the
team to agree on a basic structure. We have grouped classes (abstract classes and
interfaces) for different features. This heavy object oriented approach allows the
solution to be very scalable due to the modularity so this is useful for future
development of existing and new features.

Simplified Component Diagram (See appendix 1)
The following abstract representation section contains screenshots of this diagram
which is embedded in full in the appendix as well as github with generated PlantUML
code. In the class diagram the following symbols are defined as follows:

● A - Abstract Class
● I - Interface
● C - Class

Arrows - represent child classes inheriting from parent classes

The GameObject is what everything visible in the game is derived from. And from the
diagram you can see that the main objects in the game Boat and Obstacle are linked
to a child Movable Object as well as the CollisionObject interface.

For example, for controlling the environment of the game we have scenes which
inherit from the main Scene Interface.

We have a group of classes which inherit from the abstract class Obstacle which
helps to share and differentiate attributes between obstacles. This means further
obstacles can be added with different properties for example varying speeds and
rotation. Both Obstacle duck and branch inherit from abstract class obstacle.

Concrete Representation
The class diagram [2] can represent the updated representation after implementation
of each class and the relationship between each class. Therefore you can see how
the abstract and concrete relate with the inheritance diagram [3] which shows the
attributes and methods of each class. Screenshots from each document are below
and the diagrams in full are in the appendix as well as github with generated
PlantUML code.

How Scenes relate to each other and PixelBoat (the game class)

Screenshot from part of the class diagram [2]

Screenshot from part of the inheritance diagram [3]

This section of the inheritance diagram [3] demonstrates how the Obstacle classes
interact with each other and BoatRace.

The Boat class (which is a GameObject and Movable Object) has children
PlayerBoat and AIBoat. An example of a CollisionObject (which inherits from
CollisionBounds) is an Obstacle and this gives it functionality to collide with other
GameObjects.

Justification for Architecture (3b)

Justification for the Abstract Architecture

Object oriented programming was used as it offered a high level of abstraction while
fitting with the required language of Java.
The class inheritance structure is a product of the design process the team agreed
upon, whereby, all high level features were sketched out, then all common features
were placed into a common abstract class. This allowed for the inheritance structure
to stay simple and now get bloated with unneeded features.
An example of this would be how it was decided that we would need a class for the
player’s boat and a class for the AI’s boat. These have the common feature of being
a boat, thus a common superclass of “Boat” was created.

The above approach was used for all visible elements of the game (boats, obstacles,
etc) but it wasn’t appropriate for all features. For components such as choosing what
to show on screen at a given time. To solve this problem, scenes were created. Each
scene holds all the relevant attributes, functionality to update each frame and
functionality to draw each frame. This allowed for each scene to be separate and
completely self contained. Interfaces were also used to ensure that every scene had
the required functionality implemented.

Justification for the Concrete Architecture
The team decided on using libGDX as it gave easy and intuitive access to drawing
functionality. It also allowed for a quick and easy setup of things such as window
dimensions and user input. Building on top of this intuitive platform using our
composite OOP approach allows new developers/teams to quite easily expand
functionality of features and add new ones without facing comprehension limitations
due to the simplistic design decisions taken. Due to libGDX being a popular game
development library for Java [4] the performance and support makes it a sufficient
choice for future development.

The architecture broke down each component into small classes so that different
members of the group could work sequentially, with all their changes on only one file.
This made version management much easier because fewer conflicts between
commits occured.

Justification Relating to Requirements
Below is a list showing how each requirement was satisfied in the concrete
architecture:

UR_PLAYABILITY - ​A third party library called libGDX was used, allowing for mouse and

keyboard inputs to be handled. Additionally, every scene’s update function is required to
handle mouse and keyboard inputs.

UR_BOAT_SPECS - ​The abstract “Boat” class contains attributes and a constructor
allowing for different specifications of boat when a new Boat is instantiated. The “PlayerBoat”
class additionally has a method to change the current specification, allowing for changes
between legs if that becomes a requirement in the future.

UR_TIRED_OVER_TIME - ​One of the “Boat” class attributes is a stamina value and a
stamina used per frame value. These function as a measure of tiredness for the player.

UR_OBSTACLES - ​An “Obstacle” abstract class was made to house all common
functionality for obstacles. This also allowed for polymorphism to be used when storing
different types of obstacles, increasing code readability.

UR_COLLISIONS - ​A “CollisionObject” interface was created that the player and all other
objects implement. This ensures that everything that can be collided with, has the
appropriate functionality. Boats also contain a durability attribute, which is decreased every
time the boat collides with an object, fulfilling the second half of the requirement.

UR_BOATS_NO - ​A “BoatRace” class was created to house all functionality associated with
a leg of the game. This spaces out boats so that each boat has an appropriate amount of
space in their lane and isn’t cluttered.

UR_INFO_DISPLAY - ​The “PlayerBoat” class’ draw method contains functionality to draw
information such as how tired the player is and how damaged the boat is. This ensures that
whenever the player is playing the game (i.e. when a PlayerBoat is on screen) the
information display is shown.

UR_FINALS_PLACING - ​The scene responsible for the main game contains a check to see
if all 3 qualifying legs have been run, then it selects the fastest boats to race in a final. If the
player is not one of the fastest, the final results scene is switched to.

UR_PERFORMANCE - ​LibGDX was used for drawing to the screen and handling user
inputs. This is a fast and efficient library that enables us to run the game at the required level
of performance.

Appendix
Due to the size of these diagrams they have been placed here and are referred to above
using specific screenshots.

[1] Simplified Component Diagram for abstract representation

[2] Inheritance Diagram for Concrete Representation

[3] Class Diagram for concrete representation

Bibliography

[3] Introducing Types of UML Diagrams, Lucidchart Content Team
https://www.lucidchart.com/blog/types-of-UML-diagrams

[4] LibGDX https://libgdx.badlogicgames.com/index.html

https://www.lucidchart.com/blog/types-of-UML-diagrams

